Abstract

Isolated growth hormone deficiency type II (IGHD2) is mainly caused by heterozygous splice-site mutations in intron 3 of the GH1 gene. A dominant-negative effect of the mutant GH lacking exon 3 on wild-type GH secretion has been proposed; however, the molecular mechanisms involved are elusive. To uncover the molecular systems underlying GH deficiency in IGHD2, we established IGHD2 model mice, which carry both wild-type and mutant copies of the human GH1 gene, replacing each of the endogenous mouse Gh loci. Our IGHD2 model mice exhibited growth retardation along with intact cellular architecture and mildly activated endoplasmic reticulum stress in the pituitary gland, caused by decreased GH-releasing hormone receptor (Ghrhr) and Gh gene promoter activities. Decreased Ghrhr and Gh promoter activities were likely caused by reduced levels of nuclear CREB3L2, which was demonstrated to stimulate Ghrhr and Gh promoter activity. To our knowledge, this is the first in vivo study to reveal a novel molecular mechanism of GH deficiency in IGHD2, representing a new paradigm that differs from widely accepted models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.