Abstract

Copper deficiency has been reported to be associated with decreased cytochrome c oxidase activity, which in turn may be responsible for the observed mitochondrial impairment and cardiac failure. We isolated mitochondria from hearts of copper-deficient rats: cytochrome c oxidase activity was found to be lower than in copper-adequate mitochondria. The residual activity paralleled copper content of mitochondria and also corresponded with the heme amount associated with cytochrome aa3. In fact, lower absorption in the alpha-band region of cytochrome aa3 was found for copper-deficient rat heart mitochondria. Gel electrophoresis of protein extracted from mitochondrial membranes allowed measurements of protein content of the complexes of oxidative phosphorylation, revealing a lower content of complex IV protein in copper-deficient rat heart mitochondria. The alterations caused by copper deficiency appear to be specific for cytochrome c oxidase. Changes were not observed for F0F1ATP synthase activity, for heme contents of cytochrome c and b, and for protein contents of complexes I, III and V. The present study demonstrates that the alteration of cytochrome c oxidase activity observed in copper deficiency is due to a diminished content of assembled protein and that shortness of copper impairs heme insertion into cytochrome c oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.