Abstract

Ca2+ regulates keratinocyte differentiation by increasing intracellular Ca2+ levels. Ca2+-ATPase in the Ca2+-induced differentiation of human keratinocytes was investigated by measuring Ca2-ATPase mRNA, protein, and activity levels. Human keratinocytes were grown in Keratinocyte Growth Medium containing 0.03, 0.1, or 1.2 mM Ca2+ and assayed on days 2, 5, 7, 14, and 21. Ca2+-ATPase mRNA levels were found to be modestly increased in 5-, 7-, and 14-day cultured cells as compared with 2-day cultured cells, but levels fell below that of the 2-day cultured cells in the 21-day cultured cells. The Ca2+-ATPase mRNA levels were not affected by Ca2+ levels. A 135-kDa protein in human keratinocytes cross reacted with the monoclonal antibody against human erythrocyte Ca2+-ATPase. The level of this protein was decreased by Ca2+ and lost during differentiation, in parallel with the loss of enzymatic activity. Ca2+ influx of postconfluent 1.2 mM Ca2-grown cells was higher than that of cells grown in lower Ca2+ concentrations. Ca2+ efflux from postconfluent cells grown in 0.03 mM Ca2+ was less than that from cells grown in stronger Ca2+ concentrations. These results suggest that the loss of the plasma membrane Ca2+-ATPase with time in culture contributes to the rise in intracelluar Ca2+, thus promoting keratinocyte differentiation. J. Cell. Physiol. 172:146–154, 1997. © 1997 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.