Abstract

In this study, the sorption capacity of limestone samples for CO2 was investigated to determine the conditions under which they can be used in the high-temperature carbonate loop process. For the work, limestone samples from the Czech Republic were used, which contained a high proportion of CaO (more than 97 wt.%). A total of 20 cycles of calcination (950 °C) and subsequent CO2 sorption–carbonation (650 °C) were performed for each limestone sample tested. The sorption capacity towards CO2 in the 20th cycle was less than 10% of the value determined in the first carbonation cycle of the samples and the most significant decrease was observed between the first and second cycles. The highest sorption capacity was determined for the Branžovy sample, which captured 268 mL of CO2/per 1 g of sorbent by chemisorption. Only 15 mL of carbon dioxide per 1 g of sorbent was bound by physisorption. However, in repeated use, the Vitošov limestone had the highest sorption capacity for CO2. For all samples, the amount of carbon dioxide bound by physisorption was in the range of 4 to 10% of the amount bound by chemisorption. Due to sintering of the material, the BET specific surface area decreased by 95 to 96%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.