Abstract

Synapsin I is involved in regulating amino acid neurotransmitter release, but has a less clear role in noradrenergic nerve terminals. To better understand the role of synapsin I in the function of noradrenergic nerve terminals, we compared noradrenaline release in wild-type and synapsin I-deficient mice. No difference was found in the accumulation or in the Ca2+-independent release of [3H]noradrenaline in cerebrocortical synaptosomes from wild-type and synapsin I-deficient mice. Synaptosomes lacking synapsin I also displayed no gross alterations in either the time course or the Ca2+-dependency of [3H]noradrenaline release when stimulated by depolarizing secretagogues or ionophore treatment. In wild-type synaptosomes, activation of protein kinase C by phorbol ester treatment resulted in a Ca2+-dependent increase in [3H]noradrenaline release evoked by depolarizing secretagogues and ionophore treatment. The phorbol ester-mediated enhancement of [3H]noradrenaline release evoked by depolarizing secretagogues, but not by ionophore treatment, was greatly reduced in synapsin I-deficient synaptosomes. These results indicate that synapsin I plays a role in regulating noradrenaline release. Synapse 36:114–119, 2000. © 2000 Wiley-Liss, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.