Abstract

Changes in systemic acid-base balance are known to influence acidification in the collecting duct. The H+ secretion in the collecting duct has been shown to be an electrogenic process and it has been suggested that an H-ATPase sensitive to inhibition by N-ethylmaleimide (NEM) is responsible for H+ secretion. This study was designed to determine the effect of metabolic alkalosis on NEM-sensitive ATPase activity in the microdissected segments of the distal nephron. Metabolic alkalosis was produced by giving NaHCO3 to normal rats for 7 days. The plasma total CO2 concentration in the experimental group was 31.5 +/- 1.8 mM compared with 23.4 +/- 1.0 mM in the control group. NEM-sensitive ATPase activity was significantly lower in the cortical collecting duct and in the outer and inner medullary collecting ducts of alkali-loaded rats than those of control rats. There was no significant difference in the enzyme activity between the two groups of animals in the other nephron segments examined. Our results suggest that NEM-sensitive H-APTase activity in all three segments of the collecting duct is modulated by the acid-base status of the animal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call