Abstract

Somatic hypermutation diversifies antibody binding sites by introducing point mutations in the variable domains of rearranged immunoglobulin genes. In this study, we analyzed somatic hypermutation in variable heavy-chain (VH) domains of specific IgM antibodies of the urodele amphibian Pleurodeles waltl, immunized either on Earth or onboard the Mir space station. To detect somatic hypermutation, we aligned the variable domains of IgM heavy-chain transcripts with the corresponding VH gene. We also quantified NF-κB and activation-induced cytidine deaminase transcripts. Results were compared with those obtained using control animals immunized on Earth. Our data show that, as in most species of ectotherms, somatic hypermutation in P. waltl exhibits a mutational bias toward G and C bases. Furthermore, we show for the first time that somatic hypermutation occurs in space following immunization but at a lower frequency. This decrease is not due to a decrease in food intake or of the B-cell receptor/antigen interaction or to the absence of the germinal center-associated nuclear protein. It likely results from the combination of several spaceflight-associated changes, such as the severe reduction in T-cell activation, important perturbations of the cytoskeleton, and changes in the distribution of lymphocyte subpopulations and adhesion molecule expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.