Abstract

Various therapies are used for inflammatory bowel diseases (IBD), though none seem to be extremely effective. AP-1 is a major transcription factor that upregulates genes involved in immune and proinflammatory responses. We investigated decoy oligodeoxynucleotide (ODN) targeting AP-1 to prevent dextran sulfate sodium (DSS)-induced colitis in mice. Functional efficacies of synthetic decoy and scrambled ODNs were evaluated in vitro by a reporter gene luciferase assay and measuring flagellin-induced IL-8 expression by HCT-15 cells transfected with ODNs. Experimental colitis was induced in mice with a 2.5% DSS solution in drinking water for 7 days, and decoy or scrambled ODNs were intraperitoneally injected from days 2 to 5. Colitis was assessed by weight loss, colon length, histopathology, and detection of myeloperoxidase (MPO), IL-1β, and TNF-α in colon tissue. Therapeutic effects of AP-1 and NF-κB decoy ODNs were compared. Transfection of AP-1 decoy ODN inhibited AP-1 transcriptional activity in reporter assays and flagellin-induced IL-8 production in vitro. In mice, AP-1 decoy ODN, but not scrambled ODN, significantly inhibited weight loss, colon shortening, and histological inflammation induced by DSS. Further, AP-1 decoy ODN decreased MPO, IL-1β, and TNF-α in colonic tissue of mice with DSS-induced colitis. The AP-1 decoy therapeutic effect was comparable to that of NF-κB decoy ODN, which also significantly decreased intestinal inflammation. Double-strand decoy ODN targeting AP-1 effectively attenuated intestinal inflammation associated with experimental colitis in mice, indicating the potential of targeting proinflammatory transcription factors in new therapies for IBD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call