Abstract

Cancer patients often face severe organ toxicity caused by chemotherapy. Among these, chemotherapy-induced hepatotoxicity and cardiotoxicity are the main causes of death of cancer patients. Chemotherapy-induced cardiotoxicity even creates a new discipline termed "cardio-oncology". Therefore, relieving toxicities induced by chemotherapy has become a key issue for improving the survival and quality of life in cancer patients. In this work, mesenchymal stem cell exosomes with the "G-C" abundant tetrahedral DNA nanostructure (TDN) are modified to form a decoy exosome (Exo-TDN). Exo-TDN reduces DOX-induced hepatotoxicity as the "G-C" base pairs scavenge DOX. Furthermore, Exo-TDN with cardiomyopathic peptide (Exo-TDN-PCM) is engineered for specific targeting to cardiomyocytes. Injection of Exo-TDN-PCM significantly reduces DOX-induced cardiotoxicity. Interestingly, Exo-TDN-PCM can also promote macrophage polarization into the M2 type for tissue repair. In addition, those decoy exosomes do not affect the anticancer effects of DOX. This decoy exosome strategy serves as a promising therapy to reduce chemo-induced toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.