Abstract
Understanding the current transport characteristics of electrode interfaces is essential for optimizing device performance across a wide range of applications including bio-/chemical sensing and energy storage sectors. Cyclic voltammetry (CV) is a popular method for studying interfacial properties, particularly those involving redox systems. However, it remains challenging to differentiate between electron movements that contribute to capacitive and diffusive behaviors. In this study, we introduce a technique called flex point analysis, which uses a single differentiation step to separate capacitive and diffusive electron movements at the electrode interface during a redox reaction. Our results show that the variable capacitance at the electrode surface exhibited both positive and negative values on the order of 10-6 (micro) Farad. This approach provides a clearer understanding of interfacial electron dynamics, enhancing the interpretation of CV data and potentially improving the design and optimization of related materials and devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.