Abstract

The Multiagent Disjunctive Temporal Problem (MaDTP) is a general constraint-based formulation for scheduling problems that involve interdependent agents. Decoupling agents' interdependent scheduling problems, so that each agent can manage its schedule independently, requires agents to adopt additional local constraints that effectively subsume their interdependencies. In this paper, we present the first algorithm for decoupling MaDTPs. Our distributed algorithm is provably sound and complete. Our experiments show that the relative efficiency of using temporal decoupling to find solution spaces for MaDTPs, compared to algorithms that find complete solution spaces, improves with the interconnectedness between agents schedules, leading to orders of magnitude relative speeedup. However, decoupling by its nature restricts agents' scheduling flexibility; we define novel flexibility metrics for MaDTPs, and show empirically how the flexibility sacrificed depends on the degree of coupling between agents' schedules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.