Abstract
The synthetic control method (SCM) is widely used to evaluate causal effects under quasi-experimental designs. However, SCM suffers from weaknesses that compromise its accuracy, stability and meaningfulness, due to the nested optimization problem of covariate relevance and counterfactual weights. We propose a decoupling of both problems. We evaluate the economic effect of government formation deadlock in Spain-2016 and find that SCM method overestimates the effect by 0.23 pp. Furthermore, we replicate two studies and compare results from standard and decoupled SCM. Decoupled SCM offers higher accuracy and stability, while ensuring the economic meaningfulness of covariates used in building the counterfactual.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.