Abstract

Abstract. We measured peroxyacetyl nitrate (PAN) and other reactive species such as O3, NO2, CO, and SO2 with aerosols including mass, organic carbon (OC), and elemental carbon (EC) in PM2. 5 and K+ in PM1. 0 at Gosan Climate Observatory in Korea (33.17° N, 126.10° E) during 19 October–6 November 2010. PAN was determined through fast gas chromatography with luminol chemiluminescence detection at 425 nm every 2 min. The PAN mixing ratios ranged from 0.1 (detection limit) to 2.4 ppbv with a mean of 0.6 ppbv. For all measurements, PAN was unusually better correlated with PM2. 5 (Pearson correlation coefficient, γ = 0.79) than with O3 (γ = 0.67). In particular, the O3 level was highly elevated with SO2 at midnight, along with a typical midday peak when air was transported rapidly from the Beijing areas. The PAN enhancement was most noticeable during the occurrence of haze under stagnant conditions. In Chinese outflows slowly transported over the Yellow Sea, PAN gradually increased up to 2.4 ppbv at night, in excellent correlation with a concentration increase in PM2. 5 OC and EC, PM2. 5 mass, and PM1. 0 K+. The high K+ concentration and OC ∕ EC ratio indicated that the air mass was impacted by biomass combustion. This study highlights PAN decoupling with O3 in Chinese outflows and suggests PAN as a useful indicator for diagnosing continental outflows and assessing their perturbation of regional air quality in northeast Asia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.