Abstract

AbstractThe Antarctic Slope Current is guided by the topographic gradient of the Antarctic continental slope and creates a dynamical barrier between the continental shelf and the open ocean. The current's vertical structure varies around the continent affecting cross‐slope water mass exchange with consequences for Antarctic mass loss, ventilation of the deep ocean, and carbon uptake. The Antarctic Slope Current is surface‐intensified in many regions but bottom‐intensified in regions of dense overflows. This study investigates the role of dense overflows in modifying the dynamics of the bottom‐intensified flow using a 0.1° global ocean‐sea ice model. The occurrence of bottom‐intensification is tightly linked with dense overflows and bottom speeds correlate with dense overflows on interannual time scales. A lack of vertical connectivity between the bottom and surface flow, however, suggests that the along‐slope bottom water flows are coincidentally co‐located with the Antarctic Slope Current, rather than dynamically a part of the current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.