Abstract

Thermoelectric materials which enable heat-to-electricity conversion are fundamentally important for heat management in semiconductor devices. Achieving high thermoelectric performance requires blocking the thermal transport and maintaining the high electronic transport, but it is a challenge to satisfy both criteria simultaneously. We propose that tuning the interlayer distance can effectively modulate the electrical and thermal conductivities. We find group IV-VI and V semiconductors with a moderate interlayer distance can exhibit high thermoelectric performance. Taking SnSe as an example, we reveal that in the out-of-plane direction the delocalized pz orbitals combined with the relatively small interlayer distance lead to overlapping of the antibonding state wave functions, which is beneficial for high electronic transport. However, because of the breakdown of the chemical bond, the out-of-plane thermal conductivity is small. This study provides a strategy to enhance electrical conductivity without increasing thermal conductivity and thus sheds light on the design of thermoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.