Abstract

We consider the class of real second-order linear dynamical systems that admit real diagonal forms with the same eigenvalues and partial multiplicities. The nonzero leading coefficient is allowed to be singular, and the associated quadratic matrix polynomial is assumed to be regular. We present a method and algorithm for converting any such n-dimensional system into a set of n mutually independent second-, first-, and zeroth-order equations. The solutions of these two systems are related by a real, time-dependent, and nonlinear n-dimensional transformation. Explicit formulas for computing the $$2n \times 2n$$ real and time-invariant equivalence transformation that enables this conversion are provided. This paper constitutes a complete solution to the problem of diagonalizing a second-order linear system while preserving its associated Jordan canonical form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.