Abstract

Surface bound pH indicators were applied to study the proton transfer reactions in the mutant Asp85-->Glu of bacteriorhodopsin in the native membrane. The amino acid replacement induces a drastic acceleration of the overall rise of the M intermediate. Instead of following this acceleration, proton ejection to the extracellular membrane surface is not only two orders of magnitude slower than M formation, it is also delayed as compared with the wild-type. This demonstrates that Asp85 not only accepts the proton released by the Schiff's base but also regulates very efficiently proton transfer within the proton release chain. Furthermore, Asp85 might be the primary but is not the only proton acceptor/donor group in the release pathway. The Asp85-->Glu substitution also affects the proton reuptake reaction at the cytoplasmic side, although Asp85 is located in the proton release pathway. Proton uptake is slower in the mutant than in the wild-type and occurs during the lifetime of the O intermediate. This demonstrates a feed-back mechanism between Asp85 and the proton uptake pathway in bacteriorhodopsin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.