Abstract
Estimation of energy partitioning at leaf scale, such as fluorescence yield (ΦF) and photochemical yield (ΦP), is crucial to tracking vegetation gross primary productivity (GPP) at global scale. Nitrogen is an important participant in the process of light capture, electron transfer, and carboxylation in vegetation photosynthesis. However, the quantitative relationship between leaf nitrogen allocation and leaf energy partitioning remains unexplored. Here, a field experiment was established to explore growth stage variations in energy partitioning and nitrogen allocation at leaf scale using active fluorescence detection and photosynthetic gas exchange method in rice in the subtropical region of China. We observed a strongly positive correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF during the vegetative growth stage. There were significant differences in leaf energy partitioning, leaf nitrogen allocation, and the relationship between ΦF and ΦP before and after flowering. Furthermore, flowering weakened the correlation between the investment proportion of leaf nitrogen in photosynthetic system and ΦF. These findings highlight the crucial role of phenological factors in exploring seasonal photosynthetic dynamics and carbon fixation of ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.