Abstract

Bubbles are known to hinder electrochemical processes in water-splitting electrodes. In this study, we present a novel method to promote gas evolution away from the electrode surface. We consider a ring microelectrode encircling a hydrophobic microcavity from which a succession of bubbles grows. The ring microelectrode, tested under alkaline water electrolysis conditions, does not suffer from bubble coverage. Consequently, the chronopotentiometric fluctuations of the cell are weaker than those associated with conventional microelectrodes. Herein, we provide fundamental understanding of the mass transfer processes governing the transient behavior of the cell potential. With the help of numerical transport models, we demonstrate that bubbles forming at the cavity reduce the concentration overpotential by lowering the surrounding concentration of dissolved gas, but may also aggravate the ohmic overpotential by blocking ion-conduction pathways. The theoretical and experimental insight gained have relevant implications in the design of efficient gas-evolving electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.