Abstract
The electronic properties of electrode materials play a crucial role in defining their electrochemical behavior in energy conversion and storage devices. The assembly of van der Waals heterostructures and fabrication into mesoscopic devices enable the dependence of an electrochemical response on electronic properties to be systematically interrogated. Here, we evaluate the effect of charge carrier concentration on heterogeneous electron transfer at few-layer MoS2 electrodes by combining spatially resolved electrochemical measurements with field-effect electrostatic manipulation of band alignment. Steady-state cyclic voltammograms and finite-element simulations reveal a strong modulation of the measured electrochemical response for outer-sphere charge transfer at the electrostatic gate voltage. In addition, spatially resolved voltammetric responses, obtained at a series of locations at the surface of few-layer MoS2, reveal the governing role of in-plane charge transport on the electrochemical behavior of 2D electrodes, especially under conditions of low carrier densities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.