Abstract
This paper presents a novel concept to describe the couplings among the outputs of the stochastic systems which are represented by NARMA models. Compared with the traditional coupling description, the presented concept can be considered as an extension using statistical independence theory. Based on this concept, the decoupling control in statistical sense is established with the necessary and sufficient conditions for complete decoupling. Since the complete decoupling is difficult to achieve, a control algorithm has been developed using the Cauchy-Schwarz mutual information criterion. Without modifying the existing control loop, this algorithm supplies a compensative controller to minimise the statistical couplings of the system outputs and the local stability has been analysed. In addition, a further discussion illustrates the combination of the presented control algorithm and data-based mutual information estimation. Finally, a numerical example is given to show the feasibility and efficiency of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advanced Mechatronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.