Abstract

This work introduces an adaptive observation system and a robust control system for achieving the favorable decoupling control and high-precision speed tracking property of an induction motor (IM) drive system. First, an adaptive observation system with an inverse rotor time-constant observer is derived on the basis of model reference adaptive system (MRAS) theory to preserve the decoupling control characteristic of an indirect field-oriented IM drive. The adaptive observation system is implemented using a digital signal processor (DSP) with a high sampling rate to make it possible to achieve good dynamics. Moreover, a robust control system is developed based on the principle of computed torque control. In the robust control system, a grey uncertainty predictor is utilized to adapt the lumped uncertainty on line to relax the requirement of the lumped uncertainty in the design of a computed torque speed controller. In addition, the effectiveness of the proposed observation and control systems is verified by simulated and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.