Abstract
Electronic transport through a quantum dot chain embodied in an Aharonov-Bohm interferometer is theoretically investigated. In such a system, it is found that only for the configurations with the same-numbered quantum dots side-coupled to the quantum dots in the arms of the interferometer, some molecular states of the quantum dot chain decouple from the leads. Namely, in the absence of magnetic flux all odd molecular states decouple from the leads, but all even molecular states decouple from the leads when an appropriate magnetic flux is introduced. Interestingly, the antiresonance position in the electron transport spectrum is independent of the change of the decoupled molecular states. In addition, when considering the many-body effect within the second-order approximation, we show that the emergence of decoupling gives rise to the apparent destruction of electron-hole symmetry. By adjusting the magnetic flux through either subring, some molecular states decouple from one lead but still couple to the other, and then some new antiresonances occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.