Abstract

Solar water splitting by photovoltaic (PV) electrolysis is a promising route for sustainable hydrogen production. However, multiple PV cells connected in series are generally required to fulfil the practical electrolytic voltages, which inevitably increases the system complexity and resistance. Decoupled water electrolysis for separate hydrogen and oxygen evolution needs smaller voltage to drive each half-reaction, which provides a feasibility to achieve the single PV cell driven water electrolysis. Herein, by introducing sodium nickelhexacyanoferrate (NaNiHCF) as the redox mediator, decoupled acid water electrolyzer and amphoteric water electrolyzer were respectively constructed. The required voltages for the hydrogen or oxygen evolution steps matched with the output voltages of the perovskite solar cell (PSC). Impressively, by combining one 1 cm2 FAPbI3 -based PSC (efficiency: 18.77 %) with the decoupled amphoteric water electrolyzer, a solar-to-hydrogen (STH) efficiency of 14.4 % was achieved, which outperformed previously reported PSC-driven water electrolysis cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.