Abstract

The majority of register file designs follow one of two well-known approaches.Manymodern high-performance processors (POWER4 [1], Pentium4 [2]) use a merged register file that holds both architectural and rename registers. Other processors use a Future File (eg, Opteron [3]) with rename registers kept separately in reservation stations. Both approaches have issues that may limit their application in futuremicroprocessors. The merged register file scales poorly in terms of powerperformance while the Future File has to pay a large penalty due on branch mis-prediction recovery. In addition, the Future File requires the use of the less scalable mechanism of reservation stations. This paper proposes to combine the best aspects of the traditional Future File architecture with those of the merged physical register file. The key point is that the new architecture separates the processor state, in particular the registers, and the execution units in the pipeline back-end. Therefore it is called Decoupled State-Execute Architecture. The resulting register file can be accessed in the pipeline front-end and has several desirable properties that allow efficient application of several optimizations, most notably the register file banking and a novel writeback filtering mechanism. As a result, only a 1.0% IPC degradation was observed with aggressive banking and the energy consumption was lowered by the new writeback filtering technique. Together, the two optimizations remove approximately 80% of the energy consumed in register file data array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.