Abstract

This paper studies pulse-width modulation (PWM) techniques suitable for a four-level five-phase open-end winding (OeW) drive. The drive comprises a five-phase induction machine, supplied using two two-level voltage source inverters (VSIs) with isolated and unequal dc-link voltages, in the ratio 2:1. A decoupled carrier based (CB) PWM modulation strategy, based on unequal voltage reference sharing between the two converters, is introduced in this paper. The stability of dc-link voltages in OeW drives is investigated next, using a novel analysis technique. Several modulation methods are analysed and the results show that application of the coupled pulse width modulation technique, with carriers having in-phase disposition (PD), leads to overcharging of the capacitor in the dc-link of the inverter intended to operate with the lower dc-link voltage. On the other hand, the proposed decoupled CB PWM scheme naturally eliminates the dc-link capacitor overcharging problem. These findings are verified experimentally, using open-loop V/f control. Two different decoupled CB modulation methods are compared and the best performing modulation method is selected and incorporated further into an OeW drive with field-oriented control (FOC). The presented steady state and transient experimental results demonstrate that the decoupled CB PWM technique is suitable for high performance variable speed drive applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.