Abstract

Field probes are miniature receiver coils with localized NMR-active samples inside. They are useful in monitoring magnetic field. This information can be used to improve magnetic resonance image quality. While field probes are coupled to each other marginally in most applications, this coupling can cause incorrect resonance frequency estimates and image reconstruction errors. Here, we propose a method to reduce the coupling between field probes in order to improve the accuracy of magnetic field estimation. An asymmetric sensitivity matrix describing the coupling between channels of field probes and NMR active droplets within field probes was empirically measured. Localized signal originating from each probe was derived from the product of the inverse of the sensitivity matrix and the coupled probe measurements. This method was used to estimate maps of dynamic magnetic fields in diffusion weighted MRI. The estimated fields using decoupled probe measurement led to images more robust to eddy currents caused by diffusion sensitivity gradients along different directions.

Highlights

  • Magnetic field probes consist of micro radio-frequency (RF) coils with enclosed nuclear magnetic resonance (NMR)-active droplets1

  • To study the effect of probe coupling, we started from the simplest case, where a finite coupling exists between two probes such that the micro RF coil in one probe can receive NMR signals from the NMR-active droplets from both itself and the other probe

  • We derived the formula describing how the coupling between field probes results in oscillation in instantaneous frequency estimates. The amplitude of this oscillation is linearly proportional to the coupling strength, the difference of the precession frequency between two probes, and the ratio of their signal strengths. To overcome this coupling problem, we proposed a method to decouple field probes measurements and to improve the accuracy of dynamic magnetic field map estimation

Read more

Summary

Introduction

Magnetic field probes consist of micro radio-frequency (RF) coils with enclosed nuclear magnetic resonance (NMR)-active droplets. Decouple field probe measurements, inspired by the sensitivity-encoded MRI15, we propose a decoupling method using a sensitivity matrix to characterize the coupling between channels of field probes and NMR-active droplets within receive-only field probes. With the explicit description on how these two components are mixed using an empirically measured sensitivity matrix, we can minimize the probe coupling by multiplying the inversion of this sensitivity matrix to coupled probe measurements in order to obtain decoupled probe signals The performance of this method was first demonstrated by reducing the erroneously estimated oscillatory magnetic field when a time-invariant gradient field was applied. With the magnetic field estimated from decoupled probes, effects of eddy currents can be accurately accounted for in the reconstructed images, which show more invariant structure across measurements using diffusion weighted gradients in different directions.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.