Abstract

In this paper, an adaptive neural network sliding-mode controller design approach with decoupled method is proposed. The decoupled method provides a simple way to achieve asymptotic stability for a class of fourth-order nonlinear system. The adaptive neural sliding-mode control system is comprised of neural network (NN) and a compensation controller. The NN is the main regulator controller, which is used to approximate an ideal computational controller. The compensation controller is designed to compensate for the difference between the ideal computational controller and the neural controller. An adaptive methodology is derived to update weight parts of the NN. Using this approach, the response of system will converge faster than that of previous reports. The simulation results for the cart-pole systems and the ball-beam system are presented to demonstrate the effectiveness and robustness of the method. In addition, the experimental results for seesaw system are given to assure the robustness and stability of system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.