Abstract

In recent years, the development of multi-three-phase drives for both energy production and transportation electrification has gained growing attention. An essential feature of the multi-three-phase drives is their modularity since they can be configured as three-phase units operating in parallel and with a modular control scheme. The so-called multi-stator modeling approach represents a suitable solution for the implementation of modular control strategies able to deal with several three-phase units. Nevertheless, the use of the multi-stator approach leads to relevant coupling terms in the resulting set of equations. To solve this issue, a new decoupling transformation for the decoupled torque control of multi-three-phase induction motor drives is proposed. The experimental validation has been carried out with a modular power converter feeding a 12-phase induction machine prototype (10 kW, 6000 r/min) using a quadruple three-phase stator winding configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call