Abstract

Aiming at the problems of poor tracking accuracy, low convergence speed, weak robustness of a 6-DOF electro-hydraulic suspension test system under system uncertainties and external disturbance, this article proposes double closed-loop control scheme. In the outer loop controller, this article designs a new decoupled adaptive fast nonsingular terminal sliding mode (DAFNTSM) control to achieve fast convergence rate, high accurate and adaptive disturbances estimation during trajectory tracking. Additionally, a coupling force compensator based on RBF neural network is employed, which can reduce online calculation quantity and guarantee accuracy. For six inner loop controllers, each hydraulic actuator can precisely follow the required force solved by outer loop controller. The hard-in-loop experiment results reveal that the control approach we proposed in this paper realize superior trajectory tracking characteristics in comparison with the conventional nonsingular terminal sliding mode (CNTSM) method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call