Abstract
To correctly judge the functional role of cooperative neural activity it is essential to understand how neural correlations are determined by the structure and dynamics of neural networks. Shared presynaptic input is one of the major sources of correlated synaptic activity in such systems. In the asynchronous state of recurrent neural network models, however, spike correlations are considerably smaller than what one would expect based on the amount of shared presynaptic sources [1,2]. A similar lack of correlations in the spiking activity of neighbouring cortical neurons has been observed experimentally [3]. Recently, it has been pointed out that shared-input correlations can be actively suppressed by the dynamics of recurrent networks [4]. Here, we show that both in networks with purely inhibitory coupling (Fig. (Fig.1A)1A) and in those with mixed excitatory-inhibitory coupling (Fig. (Fig.1B)1B) this active decorrelation affects mainly the activity at low frequencies (<20 Hz). High-frequency activity, in contrast, is rather unaffected. Simulations rule out that this phenomenon is the result of refractoriness. By means of a simple linear population-rate model we demonstrate that the effect is essentially explained by inhibitory feedback. Figure 1 Population-rate power spectra for an inhibitory (A) and a balanced recurrent network (B) of leaky integrate-and-fire model neurons (black curves). Grey curves represent population-rate spectra of ensembles of unconnected neurons receiving stationary Poisson ...
Highlights
To correctly judge the functional role of cooperative neural activity it is essential to understand how neural correlations are determined by the structure and dynamics of neural networks
In the asynchronous state of recurrent neural network models, spike correlations are considerably smaller than what one would expect based on the amount of shared presynaptic sources [1,2]
It has been pointed out that shared-input correlations can be actively suppressed by the dynamics of recurrent networks [4]
Summary
To correctly judge the functional role of cooperative neural activity it is essential to understand how neural correlations are determined by the structure and dynamics of neural networks. Shared presynaptic input is one of the major sources of correlated synaptic activity in such systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.