Abstract

Exfoliated M-Al layered double hydroxide (M-Al LDH; M = Mg, Co, Ni, and Zn) nanosheets were adsorbed on Au/SiO2 and calcined to transform LDH into mixed metal oxides (MMOs) and yield Au/SiO2 coated with a thin MMO overlayer. These catalysts showed a higher catalytic activity than pristine Au/SiO2. In particular, the 50% CO conversion temperature decreased by more than 250 °C for Co-Al MMO-coated Au/SiO2. In contrast, the deposition of CoAlOx on Au/SiO2 by impregnation or the deposition of Au on Co-Al MMO-coated SiO2 resulted in a worse catalytic activity. Moreover, the presence of a thick MMO overlayer decreased the catalytic activity, suggesting that the control of the overlayer thickness to less than 1 nm is a requisite for obtaining a high catalytic activity. Moreover, the thin Co-Al MMO overlayer on Au/SiO2 possessed abundant oxygen vacancies, which would play an important role in O2 activation, resulting in a highly active interface between Au and the defect-rich MMO on the Au NP surface. Finally, this can be applied to Pt/SiO2, and the obtained Co-Al MMO-coated Pt/SiO2 also exhibited a much improved catalytic activity for CO oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.