Abstract

A magnetic composite of multiwalls carbon nanotubes (MWNTs) decorated with iron oxide nanoparticles was synthesized successfully by a simple and effective chemistry precipitation method. The composite was characterized by X-ray diffraction analysis (XRD), Mössbauer spectrum (MS), transmission electron microscopy (TEM), and Fourier transform spectroscopy (FTIR) techniques. The patterns of XRD and MS indicated that MWNTs, γ-Fe 2O 3, and Fe 3O 4 coexisted in the composite. The TEM observation indicated that the nanoparticles of iron oxide were attached on the surface of the MWNTs, and the sizes of the particles ranged from 25 to 80 nm. FTIR spectra showed that SO 4 − functional groups existed on the surface of MWNTs after modification by sodium dodecylbenzene sulfonic acid (SDBS), which could immobilize Fe 3+ ions onto the MWNTs. The hysteresis loops of the MWNTs and decorated MWNTs were measured by vibrating sample magnetometer (VSM), and the results showed that the composite was ferromagnetism with the saturated magnetization of 20.07 emu/g, and the coercive of 163.44 Oe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.