Abstract

Photocatalytic H2 evolution and biomass-derived alcohol oxidation is a cooperative way for improving the utilization of photogenerated charge carriers. Herein, a highly efficient photocatalyst was fabricated by decorating Zn0.5Cd0.5S with a C,N codoped CoP polyhedron (referred to as CoP, derived from ZIF-67), and then it was used for H2 evolution and 5-hydroxymethylfurfural (HMF) oxidation. For the optimized sample (20% CoP/Zn0.5Cd0.5S), the generated H2 rate is significantly enhanced from that of the HMF aqueous solution with 2,5-diformylfuran (DFF) as a concomitant product, about 31.7 times higher than the pristine Zn0.5Cd0.5S under visible light irradiation. The separation of photoexcited electrons (e-) and holes (h+) in the process was promoted, as both e- and h+ were involved in the desired conversions. From the results of density functional theory (DFT) calculations and in situ XPS spectra, the utilization of e- was further improved as a spontaneous transfer from Zn0.5Cd0.5S to CoP occurred due to the p-n heterojunction formed between Zn0.5Cd0.5S (n type) and CoP (p type). This work provides an efficient method to separate the photoinduced charge carriers and a new way for H2 evolution accompanied by transformation of HMF to DFF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.