Abstract

With the recently-booming hydrogen (H2) economy by green H2 as the energy carriers and the newly-emerged exhaled diagnosis by human organ-metabolized H2 as a biomarker, H2 sensing is simultaneously required with fast response, low detection limit, and tolerant stability against humidity, switching, and poisoning. Here, reliable H2 sensinghas been developed by utilizing indium oxide nanocubes decorated with palladium and gold nanodots (Pd-Au NDs/In2O3 NCBs), which have been synthesized by combined hydrothermal reaction, annealing, and chemical bath deposition. As-prepared Pd-Au NDs/In2O3 NCBs are observed with surface-enriched NDs and nanopores. Beneficially, Pd-Au NDs/In2O3 NCBs show 300 ppb-low detection limit, 5 s-fast response to 500ppm H2, 75%RH-high humidity tolerance, and 56 days-long stability at 280°C. Further, Pd-Au NDs/In2O3 NCBs show excellent stability against switching sensing response, and are tolerant to H2S poisoning even being exposed to 10ppm H2S at 280°C. Such excellent H2 sensing may be attributed to the synergistic effect of the boosted Pd-Au NDs' spillover effect and interfacial electron transfer, increased adsorption sites over the porous NCBs' surface, and utilized Pd NDs' affinity with H2 and H2S. Practically, Pd-Au NDs/In2O3 NCBs are integrated into the H2 sensing device, which can reliably communicate with a smartphone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.