Abstract

Manipulating the interfacial/surface structure of ligand-stabilized atomically precise metal nanoclusters (NCs) is one of the central tasks in nanoscience because surface motifs are directly related to key properties of nanomaterials. Although great progress has been made in engineering the surface of gold and silver nanoclusters, parallel studies on lighter copper analogues hitherto remain unexplored. In this work, we report the design, synthesis, and structure of a new class of copper nanoclusters featuring virtually identical kernels but different surface motifs. The four Cu29 nanoclusters share the same Cu13 kernel with unprecedented anticuboctahedral architecture. Finely modulating synthetic parameters endows the Cu13 core with diverse surface structures, thus affording the Cu29 series with labile surface coatings. More interestingly, the slight surface modification results in distinct optical and catalytic properties of the cluster compounds, highlighting the importance of the surface structure in shaping the behaviors of copper nanomolecules. This work not only exemplifies the efficiency of surface engineering for controlling properties of well-defined copper nanoclusters but also provides a new family of Cu materials with a clear molecular structure and controlled surface motifs that hold great promise in studying structure-property relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call