Abstract

We present dynamical simulations and simple mechanics arguments to propose a system of stacked blocks of square lattices of elastic spheres that can be used to decimate an incident impulse. Mass mismatch between adjacent blocks is accomplished by making the sphere radius in the upper block twice that of the lower block. The system decimates impact energies by converting the initial impulse into two solitary waves and then progressively into many smaller amplitude solitary waves. We also show that near perfect impact decimation capability can be realized with increased mass mismatch between adjacent blocks by creating sandwiched structures in which a block with smaller density spheres is surrounded on both sides with blocks of denser spheres. The proposed systems are expected to be scalable down to spheres of \(\sim \)100 nm and work for solid and hollow spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.