Abstract
Deconvolution is an essential step of image processing that aims to compensate for the image blur caused by the microscope's point spread function. With many existing deconvolution methods, it is challenging to choose the method and its parameters most appropriate for particular image data at hand. To facilitate this task, we developed DeconvTest: an open-source Python-based framework for generating synthetic microscopy images, deconvolving them with different algorithms, and quantifying reconstruction errors. In contrast to existing software, DeconvTest combines all components required to analyze deconvolution performance in a systematic, high-throughput and quantitative manner. We demonstrate the power of the framework by using it to identify the optimal deconvolution settings for synthetic and real image data. Based on this, we provide a guideline for (a) choosing optimal values of deconvolution parameters for image data at hand and (b) optimizing imaging conditions for best results in combination with subsequent image deconvolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.