Abstract

The output of many instruments can be modeled as a convolution of an impulse response and a series of sharp spikes. Deconvolution considers the inverse problem: estimate the input spike train from an observed (noisy) output signal. We approach this task as a linear inverse problem, solved using penalized regression. We propose the use of an L 0 penalty and compare it with the more common L 2 and L 1 penalties. In all cases a simple and iterative weighted regression procedure can be used. The model is extended with a smooth component to handle drifting baselines. Application to three different data sets shows excellent results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.