Abstract
Although visible and near‐infrared reflectance spectra contain absorption bands that are characteristic of the composition and structure of the absorbing species, deconvolving a complex spectrum is nontrivial. An improved approach to spectral deconvolution is presented here that accurately represents absorption bands as discrete mathematical distributions and resolves composite absorption features into individual absorptions bands. The frequently used Gaussian model of absorption bands is first evaluated and shown to be inappropriate for the Fe2+ electronic transition absorptions in pyroxene spectra. Subsequently, a modified Gaussian model is derived using a power law relationship of energy to average bond length. This modified Gaussian model successfully depicts the characteristic 0.9‐um absorption feature in orthopyroxene spectra using a single distribution. The modified Gaussian model is also shown to provide an objective and consistent tool for deconvolving individual absorption bands in the more complex orthopyroxene, clinopyroxene, pyroxene mixtures, and olivine spectra. The ability of this new modified Gaussian model to describe the Fe2+ electronic transition absorption bands in both pyroxene and olivine spectra strongly suggests that it be the method of choice for analyzing all electronic transition bands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.