Abstract

The deconvolution of signals is studied with thresholding estimators that decompose signals in an orthonormal basis and threshold the resulting coefficients. A general criterion is established to choose the orthonormal basis in order to minimize the estimation risk. Wavelet bases are highly sub-optimal to restore signals and images blurred by a low-pass filter whose transfer function vanishes at high frequencies. A new orthonormal basis called mirror wavelet basis is constructed to minimize the risk for such deconvolutions. An application to the restoration of satellite images is shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call