Abstract

The successful repurposing of degraded lithium-ion (Li-ion) batteries in second-life applications is a vital step towards achieving a circular economy. While reusing aged Li-cells is a promising way of mitigating their overall environmental footprint, it is crucial to anticipate their future safety and performance characteristics. Unfortunately, predicting these properties is a cumbersome task, essentially caused by limited knowledge of the interference of different degradation modes in the cells’ first life.To still enable estimating of these parameters from a current state, the present study systematically investigates the impact of abusive conditions in an early phase of the cells’ life on their subsequent degradation behavior. For this purpose, individual Li-cells are initially stressed by different measures such as overcharging, deep-discharging, plating, and deliberate combinations of the aforementioned methods. Electrochemical performance indicators are monitored during subsequent cycling of the cells which provides insights into the interdependencies of different degradation modes induced by specific stress conditions. In this manner, it is clarified whether or not the total degradation can be determined by a convolution or a superposition of individual deterioration effects and, thus, be described as a multidimensional state function.This knowledge will finally contribute to a better understanding of the performance and safety behavior of degraded Li-ion batteries which can help to successfully implement them into second-life applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call