Abstract

Decontamination of biofilm-infected rough implant surfaces is challenging. Platelet rich blood products have been shown to have anti-microbial properties against periodontal pathogens. Our aim was to investigate the effect of a potential biological implant surface disinfectant, leukocyte- and platelet-rich fibrin (L-PRF), on a mature oral multispecies biofilm on a rough titanium surface. Sandblasted, large grit, acid-etched (SLA) titanium disks were inoculated with subgingival dental plaque and cultured anaerobically for 21 days. The L-PRF membranes were collected from 12 donors in three trials (four donors in each trial). The disks were rinsed with 0.9% NaCl and exposed to the cell-rich portion of the L-PRF membranes for 48hours followed by scanning electron microscope (SEM) analysis immediately or after rinsing with 0.9% NaCl prior to fixation. The presence of platelet factor-4 in the rinse samples was analyzed by Western blotting. Remaining bacteria were quantified from SEM images of the implant surfaces and their numbers statistically compared. The L-PRF-treated samples without rinsing displayed numerous cells with multiple pseudopodia in immediate contact with bacteria that appeared perforated and increased in size. The cells were identified as platelets based on morphological criteria and by positive reaction for platelet factor-4 by Western blotting. After post-treatment rinsing, the L-PRF-treated disks displayed a significant reduction in bacterial counts (in average 92% reduction). Application of L-PRF significantly reduced bacterial counts on contaminated SLA titanium surface, most likely through anti-microbial action by platelets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call