Abstract

Mercury in aqueous streams poses severe health and environmental concerns and requires improved techniques for decontamination. One such technique is electrochemical alloy formation on platinum, which can effectively decontaminate mercury-containing aqueous streams at concentrations relevant for both industrial and natural waters. This study examines the viability of copper as an alternative to platinum. Mercury removal is faster on copper and works both with and without an applied cathodic potential. Without it, however, copper dissolution becomes a problem. Copper dissolution is preventable in neutral pH and in sulfuric acid solutions under potential control, and dissolved copper ions can be plated back onto the electrode. In the presence of nitrate or chloride anions, copper electrodes degrade rapidly even under potential control. Thus, there are practical restrictions for mercury decontamination via electrochemical alloy formation on copper, but it can be applied to solutions where copper is stable under potential control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.