Abstract

Characterization and treatment of a real pharmaceutical wastewater containing 775 mg dissolved organic carbon per liter by a solar photo-Fenton/biotreatment were studied. There were also many inorganic compounds present in the matrix. The most important chemical in this wastewater was nalidixic acid (45 mg/L), an antibiotic pertaining to the quinolone group. A Zahn–Wellens test demonstrated that the real bulk organic content of the wastewater was biodegradable, but only after long biomass adaptation; however, the nalidixic acid concentration remained constant, showing that it cannot be biodegraded. An alternative is chemical oxidation (photo-Fenton process) first to enhance biodegradability, followed by a biological treatment (Immobilized Biomass Reactor – IBR). In this case, two studies of photo-Fenton treatment of the real wastewater were performed, one with an excess of H 2O 2 (kinetic study) and another with controlled H 2O 2 dosing (biodegradability and toxicity studies). In the kinetic study, nalidixic acid completely disappeared after 190 min. In the other experiment with controlled H 2O 2, nalidixic acid degradation was complete at 66 mM of H 2O 2 consumed. Biodegradability and toxicity bioassays showed that photo-Fenton should be performed until total degradation of nalidixic acid before coupling a biological treatment. Analysis of the average oxidation state (AOS) demonstrated the formation of more oxidized intermediates. With this information, the photo-Fenton treatment time (190 min) and H 2O 2 dose (66 mM) necessary for adequate biodegradability of the wastewater could be determined. An IBR operated in batch mode was able to reduce the remaining DOC to less than 35 mg/L. Ammonium consumption and NO 3 − generation demonstrated that nitrification was also attained in the IBR. Overall DOC degradation efficiency of the combined photo-Fenton and biological treatment was over 95%, of which 33% correspond to the solar photochemical process and 62% to the biological treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.