Abstract

The mammalian pancreas is a branched organ that does not exhibit stereotypic branching patterns, similarly to most other glands. Inside branches, it contains a network of ducts that undergo a transition from unconnected microlumen to a mesh of interconnected ducts and finally to a treelike structure. This ductal remodeling is poorly understood, both on a microscopic and macroscopic level. In this article, we quantify the network properties at different developmental stages. We find that the pancreatic network exhibits stereotypic traits at each stage and that the network properties change with time toward the most economical and optimized delivery of exocrine products into the duodenum. Using in silico modeling, we show how steps of pancreatic network development can be deconstructed into two simple rules likely to be conserved for many other glands. The early stage of the network is explained by noisy, redundant duct connection as new microlumens form. The later transition is attributed to pruning of the network based on the flux of fluid running through the pancreatic network into the duodenum.

Highlights

  • IntroductionBiological examples include tree leaves and branches [1], the arterial and venous systems [2], the liver [3], lung [4,5], kidney, and several glands such as the pancreas, the mammary [6], salivary [7], lacrimal [8], prostate [9], and meibomian glands [10]

  • Branching is a phenomenon that appears everywhere in life

  • During organ development in fetuses, the ducts initially form by the coordinated polarization of cells to form small holes, which will connect and fuse, to constitute a meshwork. This hyperconnected network further develops into a treelike structure by the time of birth

Read more

Summary

Introduction

Biological examples include tree leaves and branches [1], the arterial and venous systems [2], the liver [3], lung [4,5], kidney, and several glands such as the pancreas, the mammary [6], salivary [7], lacrimal [8], prostate [9], and meibomian glands [10]. Work carried out on independent organs suggests that several branched organs share principles, such as the importance of mesenchymal signals, and even molecules, such as a frequent use of fibroblast growth factor (FGF) sources [4,5]. Branching is more stereotypic in the lung than in glands, in which the ductal tree differs between individuals. Though emphasis has been put on the outer shape of the branching epithelium, experiments in the pancreas [11,12] and salivary glands [13] suggest that the branching process may be driven from inside the gland when lumen form and connect into tubes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call