Abstract

The transcription factor p53 is a vital tumor suppressor. Upon activation by diverse stresses including oncogene activation, DNA damage, hypoxia and nutrient deprivation, p53 activates a panoply of target genes and orchestrates numerous downstream responses that suppress tumorigenesis. Although early studies of p53 suggested that its ability to induce cell cycle arrest, senescence and apoptosis programs accounted for its tumor-suppressor activity, more recent studies have challenged this notion. Moreover, p53 regulates a suite of additional processes, such as metabolism, stem cell function, invasion and metastasis. The processes p53 coordinately regulates to enact tumor suppression, and how such regulation occurs, thus remain elusive. In this review, we will summarize our current knowledge of p53-mediated tumor-suppressive mechanisms gleaned from in vivo studies in mouse models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.