Abstract

Modern organocatalysis has rapidly evolved into an essential component of contemporary organic synthesis. One of the most distinctive aspects of organocatalytic processes is the biomimetic nature in which the catalyst engages the substrate, often forming covalently bound intermediates in a manner reminiscent of enzyme catalysis. Indeed, the process of intramolecularization is often accompanied by a conformational change of the catalyst scaffold, further accentuating this analogy with biological systems. The isolation and study of these catalytic intermediates facilitate the rapid generation of conformation and reactivity profiles to assist in organocatalytic reaction development and/or clarify reaction outcomes. Emulating the formative advances that have derived from studying reaction intermediates in mechanistic organometallic and enzymatic catalysis, the deconstruction of covalently bound organocatalysis intermediates is gaining momentum as a design strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.