Abstract
Graph and digraph decompositions are a fundamental part of design theory. Probably the best known decompositions are related to decomposing the complete graph into 3-cycles (which correspond to Steiner triple systems), and decomposing the complete digraph into orientations of a 3-cycle (the two possible orientations of a 3-cycle correspond to directed triple systems and Mendelsohn triple systems). Decompositions of the λ-fold complete graph and the λ-fold complete digraph have been explored, giving generalizations of decompositions of complete simple graphs and digraphs. Decompositions of the complete mixed graph (which contains an edge and two distinct arcs between every two vertices) have also been explored in recent years. Since the complete mixed graph has twice as many arcs as edges, an isomorphic decomposition of a complete mixed graph into copies of a sub-mixed graph must involve a sub-mixed graph with twice as many arcs as edges. A partial orientation of a 6-star with two edges and four arcs is an example of such a mixed graph; there are five such mixed stars. In this paper, we give necessary and sufficient conditions for a decomposition of the λ-fold complete mixed graph into each of these five mixed stars for all λ>1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.