Abstract

A locally compact contraction group is a pair (G,α), where G is a locally compact group and α:G→G an automorphism such that αn(x)→e pointwise as n→∞. We show that every surjective, continuous, equivariant homomorphism between locally compact contraction groups admits an equivariant continuous global section. As a consequence, extensions of locally compact contraction groups with abelian kernel can be described by continuous equivariant cohomology. For each prime number p, we use 2-cocycles to construct uncountably many pairwise non-isomorphic totally disconnected, locally compact contraction groups (G,α) which are central extensions{0}→Fp((t))→G→Fp((t))→{0} of the additive group of the field of formal Laurent series over Fp=Z/pZ by itself. By contrast, there are only countably many locally compact contraction groups (up to isomorphism) which are torsion groups and abelian, as follows from a classification of the abelian locally compact contraction groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call